库搏体育

学术活动
学术活动
当前位置: 库搏体育 > 学术活动 > 学术活动 > 正文
库搏体育材料科学与工程研究院《材料科学论坛》学术报告:From extended surface to high-performing catalysts - synthetic design at nanoscale

库搏体育材料科学与工程研究院《材料科学论坛》

学术报告

报告题目:From extended surface to high-performing catalysts - synthetic design at nanoscale

报告人:Prof. Yu Huang(University of California)
      
报告时间:2018年6月27日(星期三)下午4:00

报告地点:库搏体育逸夫技术科学楼A512

联系人:林元华老师  62773741

报告摘要:
Material formation in nature is precisely controlled in all aspects from crystal nucleation, growth to assembly to deliver superior functions. Specific biomolecule-material interactions have been hypothesized to play important roles in these processes. Proteins, polymers and small molecules have been extensively explored to replicate the degree of control in material formation in vitro and for nonbiogenic materials. However the organic-inorganic interfacial interaction is still far from being understood. In this talk I will share our efforts on decoding the myth of biomolecular specificity to material surface and their roles in controlling crystal nucleation and growth.   I will then share our recent research on improving catalytic functions of nanocrystals through synthetic design. These studies open opportunities in understanding the molecular details of inorganic-organic interface interaction, which can one day lead to the development of a library of molecular functions for materials design and engineering.

报告人简介:

E-mail: yhuang@seas.ucla.edu

Dr. Yu Huang received her B.S. in Chemistry from University of Science and Technology of China, and her Ph.D in physical chemistry and M.A in Chemistry from Harvard University. Before she embarked on her independent career at UCLA She was awarded the prestigious Lawrence Fellowship and held a joint postdoctoral position with Lawrence Livermore National Laboratory (LLNL) and MIT.
At UCLA Prof. Huang’s research focuses on mechanistic understanding of nanoscale phenomena and on exploiting the unique properties of nanoscale materials for various applications. Taking advantage of the unique roles of nanoscale surfaces and interfaces, she is creating methodologies to apply the latest developments in nanoscale materials and nanotechnology for probing nanoscale processes that can fundamentally impact a wide range of technologies including materials synthesis, catalysis, fuel cells, and devices applications.
Prof. Huang’s achievements have gained her international and national recognitions including the Materials Research Society (MRS) Fellow, the Royal Society of Chemistry (RSC) Fellow, the International Precious Metal Institute (IPMI) Carol Tyler Award, the Presidential Early Career Award in Science and Engineering (PECASE), the National Institute of Health (NIH) Director’s New Innovator Award, the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, the World’s Top 100 Young Innovators award, the Sloan Fellowship,  the International Union of Pure and Applied Chemistry (IUPAC) Young Chemist Award, and the Nano 50 Award.


 

Copyright ? 2020 库搏体育 All Rights Reserved. 地址:库搏体育 逸夫技术科学楼 100084

库搏体育-库搏体育注册