库搏体育

学术活动
学术活动
当前位置: 库搏体育 > 学术活动 > 学术活动 > 正文
库搏体育材料科学与工程研究院《材料科学论坛》学术报告:Computation Accelerated Design of Materials and Interfaces for Solid-State Batteries

库搏体育材料科学与工程研究院《材料科学论坛》

学术报告

题目:Computation Accelerated Design of Materials and Interfaces for Solid-State Batteries

报告人:Yifei Mo (University of Maryland, USA)

时间:2018年6月12日(星期二)上午10点

地点:库搏体育逸夫技术科学楼A205报告厅

联系人:沈洋老师 62794855

报告摘要:
All-solid-state Li-ion battery based on solid electrolytes is a promising next-generation battery technology with high energy density, intrinsic safety, long cycle life, and wide operational temperatures. However, multiple challenges, such as low ionic conductivity of solid electrolytes and poor interfacial compatibility at the solid electrolyte-electrode interfaces, are impeding the development of this new battery technology. To resolve these materials challenges, we develop and leverage an array of computation techniques to provide unique materials insights into the fundamental materials limitations and to establish general design principles of materials and solid interfaces. Our first-principles atomistic modeling studies reveal the origin of ultra-fast Li+ diffusion in lithium super-ionic conductors. Based on the newly gained understanding, we establish design principles for fast ion-conductor materials, and demonstrate these design principles in the computation discovery and design of new lithium super-ionic conductors. In addition, we developed materials-genome database-enabled computation approach in investigating the compatibility of heterogeneous interfaces between solid electrolytes and electrodes. Key factors affecting the compatibility of the solid electrolyte-electrode interfaces are identified, and interfacial design strategies are proposed from our thermodynamic computation. The demonstrated computation capabilities represent a transferable model in designing new materials and interfaces for emerging technologies.

个人简介:
Prof. Yifei Mo is an Assistant Professor of Materials Science and Engineering at the University of Maryland, College Park, USA. Dr. Mo’s research aims to advance the understanding, design, and discovery of engineering materials through cutting-edge computational techniques. His current research projects target critical materials problems in energy storage and conversion technologies, with current emphases on beyond Li-ion and all-solid-state batteries. Dr. Mo obtained his Ph.D. degree in Materials Science from the University of Wisconsin, Madison, USA (2005-2010), and performed his postdoctoral research at Massachusetts Institute of Technology (2010-2013). His research has been published in leading peer-reviewed journals including Nature, Nature Materials, Nature Communications, Advanced Energy Materials, Nano Letter, Chemistry of Materials, and Physical Review B, etc.


 

Copyright ? 2020 库搏体育 All Rights Reserved. 地址:库搏体育 逸夫技术科学楼 100084

库搏体育-库搏体育注册